Exceptional service in the national interest

Validation and Optimization Testing of a Target Fueled Isotope Production Reactor

James Dahl

Manager of Nuclear Safety Analysis, Radiation Sciences Center

Topics

- Reactor Design Concept
- Approach to Critical Experiments
- Target/Fuel Thermo-Hydraulic Tests
- Burnup and Transient Fuel Tests
- Conclusions

Reactor Design Concept

Approach to Critical Experiments

- Load to critical approach using inverse multiplication measurements
- Evaluate three key design parameters;
 - Target/fuel pitch,
 - Reflector design and
 - Moderator temperature feedback coefficient.
- Utilize the Sandia Critical Experiment Facility (SCXF)

Sandia Critical Experiment Facility

Sandia Critical Experiment Facility

Sandia Critical Experiment Facility

Target/Fuel Thermo-Hydraulic Tests

- Open pool reactor power is limited by heat transfer from fuel/targets to coolant
 - Confirming the calculated Minimum Critical Heat Flux can be supported experimentally outside of a reactor core.
 - A tri-lattice of simulated inert (i.e. no fissile material) fuel/target elements will be setup in a deep (~6 m) pool.
 - The elements will be electrically heated to the range of peak element power calculated to occur during normal and accident conditions.
 - The average fuel/target element power is anticipated to be 10 kW per element up to a maximum of 38 kW. Based on calculations this would equate to a UO2 matrix temperature of about 1200° C.
 - The coolant channel inlet temperature will be controlled to simulate a coolant loop return and the coolant channel outlet temperature will be measured.

Burnup and Transient Fuel Tests

Sandia's Annular Core Research Reactor (ACRR)

Annular Core Research Reactor(ACRR) National Laboratories

ACRR Pulse

Conclusions

- A thorough and planned testing schedule for a medical isotope production reactor can be executed at Sandia National Laboratories.
- Approach to critical and low power testing will help establish key operating parameters of the reactor system.
- Out of core thermo-hydraulic tests will help establish reactor power limits.
- Burnup and transient tests can be conducted at Sandia's ACRR.
- The tests will validate design calculations, optimize the final design and support the licensing process.

Questions

Contact: James Dahl

Sandia National Laboratories

jjdahl@sandia.gov

(505) 284-9067